Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592819

RESUMO

Combination therapy has proven effective in counteracting tumor multidrug resistance (MDR). However, the pharmacokinetic differences among various drugs and inherent water insolubility for most small molecule agents greatly hinder their synergistic effects, which makes the delivery of drugs for combination therapy in vivo a key problem. Herein, we propose a protonated strategy to transform a water-insoluble small molecule drug-inhibitor conjugate into an amphiphilic one, which then self-assembles into nanoparticles for co-delivery in vivo to overcome tumor MDR. Specifically, paclitaxel (PTX) is first coupled with a third-generation P-glycoprotein (P-gp) inhibitor zosuquidar (Zos) through a glutathione (GSH)-responsive disulfide bond to produce a hydrophobic drug-inhibitor conjugate (PTX-ss-Zos). Subsequently treated with hydrochloric acid ethanol solution (HCl/EtOH), PTX-ss-Zos is transformed into the amphiphilic protonated precursor and then forms nanoparticles (PTX-ss-Zos@HCl NPs) in water by molecular self-assembly. PTX-ss-Zos@HCl NPs can be administered intravenously and accumulated specifically at tumor sites. Once internalized by cancer cells, PTX-ss-Zos@HCl NPs can be degraded under the overexpressed GSH to release PTX and Zos simultaneously, which synergistically reverse tumor MDR and inhibit tumor growth. This offers a promising strategy to develop small molecule self-assembled nanoagents to reverse tumor MDR in combination therapy.

2.
ACS Appl Mater Interfaces ; 15(50): 58067-58078, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056905

RESUMO

Recently, cell membrane camouflaged nanoparticles (NPs) endowed with natural cellular functions have been extensively studied in various biomedical fields. However, there are few reports about such biomimetic NPs used to codeliver chemodrug and genes for synergistic cancer treatment up to now. Herein, we first prepare chemodrug-gene nanoparticles (Mito-Her2 NPs) by the electrostatic interaction coself-assembly of mitoxantrone hydrochloride (Mito) and human epidermal growth factor receptor-2 antisense oligonucleotide (Her2 ASO). Then, Mito-Her2 NPs are coated by a hybrid membrane (RSHM), consisting of the red blood cell membrane (RBCM) and the SKOV3 ovarian cancer cell membrane (SCM), to produce biomimetic chemodrug-gene nanoparticles (Mito-Her2@RSHM NPs) for combination therapy of ovarian cancer. Mito-Her2@RSHM NPs integrate the advantages of RBCM (e.g., good immune evasion capability and long circulation lifetime in the blood) and SCM (e.g., highly specific cognate recognition) together and improve the anticancer efficacy of Mito-Her2 NPs. The results show that Mito-Her2@RSHM NPs can be devoured by SKOV3 ovarian cancer cells and effectively degraded to release Her2 ASOs and Mito simultaneously. Her2 ASOs can inhibit the expression of endogenous Her2 genes and recover cancer cells' sensitivity to Mito, which ultimately led to a high apoptosis rate of 75.7% in vitro. Mito-Her2@RSHM NPs also show a high tumor suppression rate of 83.33 ± 4.16% in vivo without significant damage to normal tissues. In summary, Mito-Her2@RSHM NPs would be expected as a versatile and safe nanodrug delivery platform with high efficiency for chemo-gene combined cancer treatment.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Membrana Eritrocítica/metabolismo , Apoptose , Mitomicina , Nanopartículas/uso terapêutico
3.
J Med Chem ; 66(24): 16843-16868, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38079530

RESUMO

Survivin is a novel attractive target for cancer therapy; however, it is considered undruggable because it lacks enzymatic activities. Herein, we describe our efforts toward the discovery of a novel series of 4,11-dioxo-4,11-dihydro-1H-anthra[2,3-d]imidazol-3-ium derivatives as survivin inhibitors by targeting ILF3/NF110. Intensive structural modifications led us to identify a lead compound AQIM-I, which remarkably inhibited nonsmall cell lung cancer cells A549 with an IC50 value of 9 nM and solid tumor cell proliferation with more than 700-fold selectivity against human normal cells. Further biological studies revealed that compound AQIM-I significantly inhibited survivin expression and colony formation and induced ROS production, apoptosis, cell cycle arrest, DNA damage, and autophagy. Furthermore, the promoter-luciferase reporter assay showed that AQIM-I attenuated the survivin promoter activity enhanced by the overexpression of ILF3/NF110 in a concentration-dependent manner, and specific binding (KD = 163 nM) of AQIM-I to ILF3/NF110 was detected by surface plasmon resonance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Survivina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Apoptose , Proteínas Inibidoras de Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Proteínas do Fator Nuclear 90/genética , Proteínas do Fator Nuclear 90/metabolismo
4.
Org Lett ; 25(48): 8727-8732, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38029372

RESUMO

The 1,3-rearrangement of allylic derivatives has rarely been reported, except for allylic alcohols. Herein, we describe an iridium-catalyzed 1,3-rearrangement of readily available allylic ethers to access the difficultly prepared allylic ethers with a large steric hindrance. The developed method shows a broad substrate scope and could be used in the late-stage modification of several natural products. In addition, a possible reaction pathway is also provided on the basis of the control experiments.

5.
Angew Chem Int Ed Engl ; 62(41): e202309859, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610735

RESUMO

An iridium-catalyzed remote site-switchable hydroarylation of alkenes was reported, delivering the products functionalized at the subterminal methylene and terminal methyl positions on an alkyl chain controlled by two different ligands, respectively, in good yields and with good to excellent site-selectivities. The catalytic system showed good functional group tolerance and a broad substrate scope, including unactivated and activated alkenes. More importantly, the regioconvergent transformations of mixtures of isomeric alkenes were also successfully realized. The results of the mechanistic studies demonstrate that the reaction undergoes a chain-walking process to give an [Ar-Ir-H] complex of terminal alkene. The subsequent processes proceed through the modified Chalk-Harrod-type mechanism via the migratory insertion of terminal alkene into the Ir-C bond followed by C-H reductive elimination to afford the hydrofunctionalization products site-selectively.

6.
Biomater Sci ; 11(12): 4335-4345, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37133364

RESUMO

Multidrug resistance (MDR) is a major cause of chemotherapy failure in cancer treatment. P-glycoprotein (P-gp) inhibitors are helpful for chemotherapy drugs to overcome tumor MDR effectively. With the traditional physical mixing of chemotherapy drugs and inhibitors, it is difficult to achieve satisfactory results due to the different pharmacokinetics and physicochemical properties between the two of them. Herein, we prepared a novel drug-inhibitor conjugate prodrug (PTX-ss-Zos) from a cytotoxin (PTX) and a third-generation P-gp inhibitor (Zos) linked with a redox-responsive disulfide. Then, PTX-ss-Zos was encapsulated in DSPE-PEG2k micelles to form stable and uniform nanoparticles (PTX-ss-Zos@DSPE-PEG2k NPs). PTX-ss-Zos@DSPE-PEG2k NPs could be cleaved by the high-concentration GSH in cancer cells and release PTX and Zos simultaneously to inhibit MDR tumor growth synergistically without apparent systemic toxicity. The in vivo evaluation experiments exhibited that the tumor inhibition rates (TIR) of PTX-ss-Zos@DSPE-PEG2k NPs were high up to 66.5% for HeLa/PTX tumor-bearing mice. This smart nanoplatform would bring new hope for cancer treatment in clinical trials.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Micelas , Paclitaxel/farmacologia , Resistência a Múltiplos Medicamentos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Oxirredução , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos
7.
Bioact Mater ; 25: 189-200, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36817822

RESUMO

The combination of chemotherapy and photodynamic therapy (PDT) based on nanoparticles (NPs) has been extensively developed to improve the therapeutic effect and decrease the systemic toxicity of current treatments. However, overexpressed glutathione (GSH) in tumor cells efficiently scavenges singlet oxygens (1O2) generated from photosensitizers and results in the unsatisfactory efficacy of PDT. To address this obstacle, here we design H2O2-responsive polymer prodrug NPs with GSH-scavenger (Ce6@P(EG-a-CPBE) NPs) for chemo-photodynamic synergistic cancer therapy. They are constructed by the co-self-assembly of photosensitizer chlorin e6 (Ce6) and amphiphilic polymer prodrug P(EG-a-CPBE), which is synthesized from a hydrophilic alternating copolymer P(EG-a-PD) by conjugating hydrophobic anticancer drug chlorambucil (CB) via an H2O2-cleavable linker 4-(hydroxymethyl)phenylboronic acid (PBA). Ce6@P(EG-a-CPBE) NPs can efficiently prevent premature drug leakage in blood circulation because of the high stability of the PBA linker under the physiological environment and facilitate the delivery of Ce6 and CB to the tumor site after intravenous injection. Upon internalization of Ce6@P(EG-a-CPBE) NPs by tumor cells, PBA is cleaved rapidly triggered by endogenous H2O2 to release CB and Ce6. Ce6 can effectively generate abundant 1O2 under 660 nm light irradiation to synergistically kill cancer cells with CB. Concurrently, PBA can be transformed into a GSH-scavenger (quinine methide, QM) under intracellular H2O2 and prevent the depletion of 1O2, which induces the cooperatively strong oxidative stress and enhanced cancer cell apoptosis. Collectively, such H2O2-responsive polymer prodrug NPs loaded with photosensitizer provide a feasible approach to enhance chemo-photodynamic synergistic cancer treatment.

8.
Chem Soc Rev ; 52(5): 1529-1548, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36786068

RESUMO

Digital synthetic polymers with uniform chain lengths and defined monomer sequences have recently become intriguing alternatives to traditional silicon-based information devices or natural biomacromolecules for data storage. The structural diversity of information-containing macromolecules endows the digital synthetic polymers with higher stability and storage density but less occupied space. Through subtly designing each unit of coded structure, the information can be readily encoded into digital synthetic polymers in a more economical scheme and more decodable, opening up new avenues for molecular digital data storage with high-level security. This tutorial review summarizes recent advances in salient features of digital synthetic polymers for data storage, including encoding, decoding, editing, erasing, encrypting, and repairing. The current challenges and outlook are finally discussed to offer potential solution guidance and new perspectives for the creation of next-generation digital synthetic polymers and broaden the scope of their applicability.

9.
Nanoscale ; 15(4): 1914-1924, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36617999

RESUMO

The anti-apoptotic B-cell lymphoma-2 (Bcl-2) family of proteins are critical regulators of cell death that are overexpressed in many cancer cells, especially in multi-drug resistant cancer cells. Combinatorial gene- and chemotherapies using antisense oligonucleotides (ASOs) to suppress the expression of Bcl-2-family mRNA and restore the sensitivity of the cell to chemodrugs provide a promising pathway for anticancer treatment. However, intrinsic differences between macromolecular ASOs and small molecular chemodrugs make their co-delivery challenging. Moreover, extraneous carriers may induce immunogenicity and inflammation problems. Herein, we develop a targeted nanodrug delivery system using the cationic amphiphilic chemodrug mitoxantrone (Mito), which interacts with Bcl-2 ASO through electrostatic interaction and self-assembles into nanoparticles (NP[Bcl-2/Mito]), whose size can be controlled by regulating the ratio of ASO and Mito. NP[Bcl-2/Mito] can protect the ASO from degradation during delivery and combine gene- and chemotherapies to improve the anticancer effect. Furthermore, cancer cell membranes (CCMs) derived from homologous tumors were used to camouflage NP[Bcl-2/Mito] (NP[Bcl-2/Mito]@CCM) to achieve immune escape and tumor targeting. Both in vitro and in vivo assessments demonstrate the excellent performance of NP[Bcl-2/Mito]@CCM for drug-resistant breast tumor therapy. This CCM-camouflaged ASO/chemodrug nanoplatform provides a promising pathway for the targeted delivery of ASOs and chemodrugs for tumor combination therapy.


Assuntos
Neoplasias , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Oligonucleotídeos , Neoplasias/metabolismo , Mitoxantrona/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
10.
Biomater Sci ; 10(22): 6601-6613, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36250610

RESUMO

The combination of gene therapy and chemotherapy is emerging as a promising strategy for multidrug-resistant (MDR) cancer treatment. However, due to the significant differences in the physicochemical properties between macromolecular oligonucleotides and chemodrugs, the co-delivery of different drug combos makes for a great challenge. Moreover, the biosafety of the carriers and poor lysosomal escape of oligonucleotides are the main concerns for combination therapy. Herein, we developed a facile carrier-free strategy to co-deliver small interfering RNA (siRNA) and positive-charged chemodrugs (termed cationic amphiphilic chemodrugs, CACDs), in which CACDs interact with negative-charged anti P-glycoprotein siRNA (siPgp) without extra carriers and self-assemble into siPgp/CACDs nanoparticles (NPs[siPgp/CACDs]). Meanwhile, the CACDs also play an important role in the lysosomal escape of siRNA. Both molecular dynamics simulations and experimental characterization demonstrate that CACDs and siRNA can self-assemble into nanoparticles. Furthermore, red blood cell membrane (RBCm) was used to camouflage the NPs[siPgp/CACDs] to enhance their physiological stability and prolong the circulation time. Both in vitro and in vivo assessments reveal their excellent performance for drug-resistant cancer treatment. This strategy provides a safe and efficient pathway for gene and chemo combination therapy for MDR cancers.


Assuntos
Nanopartículas , Neoplasias , Humanos , RNA Interferente Pequeno , Membrana Eritrocítica , Nanopartículas/química , Neoplasias/tratamento farmacológico , Oligonucleotídeos , Linhagem Celular Tumoral
11.
Biomater Sci ; 10(17): 4876-4888, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35861325

RESUMO

As a taxoid agent, docetaxel (DTX) exhibits potent antitumor activity. However, severe toxic side effects and acquired multidrug resistance represent its clinical challenges. Herein, a novel docetaxel derivative (DTX-AI) is synthesized via the nucleophilic addition reaction of 4-acetylphenyl carbamate at the C10 position of the DTX framework. DTX-AI exhibits superior cytotoxicity and a higher apoptotic ratio in vitro against DTX-sensitive tumor cells (MCF-7, HeLa and A549 cells) and even DTX-resistant ones (HeLa/PTX cells), but displays less toxicity against normal cells (MRC-5 and L929 cells) compared with DTX. DTX-AI can effectively suppress the growth of HeLa-tumor xenografts in vivo and even induce complete tumor regression. Furthermore, DTX-AI shows sustained effects on the inhibition of A549-tumor xenograft growth and no obvious recurrence, even after the drug administration was stopped for 30 d. More importantly, DTX-AI has significantly reduced long-term and short-term animal toxicity and extended the survival of mice (100%) compared with DTX (0%). DTX-AI is expected to be a promising 'me-better' anti-tumor drug with higher efficiency and lower toxicity for improved chemotherapy in the clinic.


Assuntos
Antineoplásicos , Taxoides , Animais , Linhagem Celular Tumoral , Docetaxel/farmacologia , Portadores de Fármacos/farmacologia , Resistência a Múltiplos Medicamentos , Humanos , Camundongos , Modelos Animais , Taxoides/farmacologia , Taxoides/uso terapêutico
12.
Sci Adv ; 8(28): eabq2005, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857522

RESUMO

Bacteriophages (phages) are widely explored as antimicrobials for treating infectious diseases due to their specificity and potency to infect and inhibit host bacteria. However, the application of phages to inhibit intracellular pathogens has been greatly restricted by inadequacy in cell entry and endosomal escape. Here, we describe the use of cationic polymers to selectively cap negatively charged phage head rather than positively charged tail by electrostatic interaction, resulting in charge-reversed phages with uninfluenced vitality. Given the positive surface charge and proton sponge effect of the nanocapping, capped phages are able to enter intestinal epithelial cells and subsequently escape from endosomes to lyse harbored pathogens. In a murine model of intestinal infection, oral ingestion of capped phages significantly reduces the translocation of pathogens to major organs, showing a remarkable inhibition efficacy. Our work proposes that simple synthetic nanocapping can manipulate phage bioactivity, offering a facile platform for preparing next-generation antimicrobials.


Assuntos
Bacteriófagos , Doenças Transmissíveis , Animais , Bactérias , Bacteriófagos/fisiologia , Endossomos , Humanos , Camundongos
13.
Biomater Sci ; 10(14): 3901-3910, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35696997

RESUMO

Hypoxia-induced multi-drug resistance (MDR) often develops in the chemotherapy process of most anticancer drugs (e.g., doxorubicin, DOX) and results in treatment failure in the clinic. Herein, a PEG-Pt(IV) prodrug was co-self-assembled with DOX into nanodrugs (PEG-Pt(IV)@DOX NPs). They can accumulate in tumor sites due to their longer blood retention half-life. Under light irradiation, the PEG-Pt(IV) prodrug can in situ self-generate oxygen (O2) to reduce the hypoxic zone in tumor tissue effectively and simultaneously release active cis-Pt(II) and DOX. The increasing O2 concentration in the tumor tissue can raise the level of reactive oxygen species (ROS) produced from DOX and significantly enhance the cytotoxicity of DOX to inhibit tumor proliferation by combining with active cis-Pt(II). Finally, the hypoxia-induced MDR of DOX can be alleviated. More importantly, the enhanced cytotoxicity of DOX is limited to the tumor site, which can effectively reduce its side effects on normal tissues. In summary, this would be a promising platform for the combination chemotherapy of hypoxia solid tumors in the clinic.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos , Humanos , Hipóxia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
14.
Dalton Trans ; 51(14): 5624-5634, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35319055

RESUMO

Here two Zn(II) coordination polymers [Zn20(DMCA)12]O12 (DMCA = demethylcantharic acid, DMCA-Zn1) and [Zn(DMCA)](H2O)2 (DMCA-Zn2) are synthesized from a broad-spectrum anticancer drug norcantharidin (NCTD) and Zn(NO3)2·6H2O under solvothermal conditions. By mechanical grinding with a biocompatible polymeric surfactant F127, ultrasonic treatment and filtration, DMCA-Zn1 and DMCA-Zn2 can be transformed into stable nanoparticles (DMCA-Zn1 NPs and DMCA-Zn2 NPs) suspended in water with average diameters of around 190 nm and 162 nm for drug delivery. The in vitro evaluation indicates that DMCA-Zn1 NPs and DMCA-Zn2 NPs can enter into HepG2 and Hep3B cancer cells via endocytosis and inhibit their proliferation. Meanwhile they exhibit relatively low toxicity to L927 normal cells. The in vivo evaluation confirms that DMCA-Zn1 NPs and DMCA-Zn2 NPs can more effectively inhibit the growth of Hep3B tumors with relatively few side effects compared with free NCTD. This approach can be extended to other anticancer drugs to construct nanodrug delivery systems for cancer treatment.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes , Sistemas de Liberação de Medicamentos , Ligantes , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Polímeros , Zinco/farmacologia
15.
Biomater Sci ; 10(4): 997-1007, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35044379

RESUMO

P-glycoprotein (P-gp) induced multidrug resistance (MDR) is the main reason for the failure of cancer chemotherapy. The combined delivery of chemodrug and P-gp inhibitor is a promising pathway to reverse MDR. However, the intrinsic stimuli in the tumor microenvironment could not realize a complete drug release, which would induce poor cancer therapeutic efficacy. Herein, we conjugated tamoxifen (TAM) with D-α-tocopherol polyethylene glycol1000 succinate (TPGS) based on a reactive oxygen species (ROS)-responsive aryl boronic ester bond to construct a self-amplified ROS-responsive chemodrug-inhibitor (TPGS-TAM) co-delivery system. Due to its amphiphilic property, the TPGS-TAM conjugates could self-assemble into uniform spherical nanoparticles (NPs). After effective endocytosis by cancer cells, the intracellular ROS cleaved the aryl boronic ester bond and initiated the release of TAM and α-tocopherol succinate (α-TOS) from the NPs. Subsequently, the released α-TOS further generated ROS to facilitate the release of TAM. Moreover, α-TOS also consumed adenosine triphosphate (ATP) to impair ATP-dependent P-gp mediated drug efflux to reverse the tumor's drug resistance. As a result, the TPGS-TAM NPs enhanced the antitumor effect with a tumor inhibition rate (TIR) high up to 74.6 ± 6.1% in an MCF-7/ADR tumor model. Based on systematic in vitro and in vivo assessments, this self-amplified ROS-responsive carrier-free conjugate of chemodrug/P-gp inhibitor may shed light on the potential application for the MDR cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio
16.
Nanomicro Lett ; 14(1): 33, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34902075

RESUMO

Affibody molecules are small non-immunoglobulin affinity proteins, which can precisely target to some cancer cells with specific overexpressed molecular signatures. However, the relatively short in vivo half-life of them seriously limited their application in drug targeted delivery for cancer therapy. Here an amphiphilic affibody-drug conjugate is self-assembled into nanomicelles to prolong circulation time for targeted cancer therapy. As an example of the concept, the nanoagent was prepared through molecular self-assembly of the amphiphilic conjugate of ZHER2:342-Cys with auristatin E derivate, where the affibody used is capable of binding to the human epidermal growth factor receptor 2 (HER2). Such a nanodrug not only increased the blood circulation time, but also enhanced the tumor targeting capacity (abundant affibody arms on the nanoagent surface) and the drug accumulation in tumor. As a result, this affibody-based nanoagent showed excellent antitumor activity in vivo to HER2-positive ovary and breast tumor models, which nearly eradicated both small solid tumors (about 100 mm3) and large established tumors (exceed 500  mm3). The relative tumor proliferation inhibition ratio reaches 99.8% for both models.

17.
STAR Protoc ; 2(4): 100879, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34806041

RESUMO

It can be challenging to maintain tissue integrity using established histology protocols. Here, we describe a protocol composed of Hartman's fixation, window technique, microwave-based tissue processing, optimized depigmentation, and antigen retrieval pretreatment. This is followed by the ViewRNA single-molecule fluorescence in situ hybridization and immunofluorescence techniques to optimize routine histological staining and molecular histology multiplexing assays. Our protocol is highly reproducible in any laboratory and may decrease animal usage and lab resource expenditure. For complete details on the use and execution of this protocol, please refer to Pang et al. (2021).


Assuntos
Olho/química , Imunofluorescência/métodos , Hibridização In Situ/métodos , RNA/química , Animais , Feminino , Imuno-Histoquímica , Masculino , Camundongos , RNA/genética
18.
Chem Sci ; 12(35): 11740-11747, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34659710

RESUMO

Nucleic acid sensors have realized much success in detecting positively charged and neutral molecules, but have rarely been applied for measuring negatively charged molecules, such as fluoride, even though an effective sensor is needed to promote dental health while preventing osteofluorosis and other diseases. To address this issue, we herein report a quantitative fluoride sensor with a portable fluorometer readout based on fluoride riboswitch-regulated transcription coupled with CRISPR-Cas13-based signal amplification. This tandem sensor utilizes the fluoride riboswitch to regulate in vitro transcription and generate full-length transcribed RNA that can be recognized by CRISPR-Cas13a, triggering the collateral cleavage of the fluorophore-quencher labeled RNA probe and generating a fluorescence signal output. This tandem sensor can quantitatively detect fluoride at ambient temperature in aqueous solution with high sensitivity (limit of detection (LOD) ≈ 1.7 µM), high selectivity against other common anions, a wide dynamic range (0-800 µM) and a short sample-to-answer time (30 min). This work expands the application of nucleic acid sensors to negatively charged targets and demonstrates their potential for the on-site and real-time detection of fluoride in environmental monitoring and point-of-care diagnostics.

19.
Mol Pharm ; 18(10): 3854-3861, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34543035

RESUMO

Tumor necrosis factor-related apoptosis ligand (TRAIL) is a promising protein candidate for selective apoptosis of a variety of cancer cells. However, the short half-life and a lack of targeted delivery are major obstacles for its application in cancer therapy. Here, we propose a simple strategy to solve the targeting problem by genetically fusing an anti-HER2 affibody to the C-terminus of the TRAIL. The fusion protein TRAIL-affibody was produced as a soluble form with high yield in recombinant Escherichia coli. In vitro studies proved that the affibody domain promoted the cellular uptake of the fusion protein in the HER2 overexpressed SKOV-3 cells and improved its apoptosis-inducing ability. In addition, the fusion protein exhibited higher accumulation at the tumor site and greater antitumor effect than those of TRAIL in vivo, indicating that the affibody promoted the tumor homing of the TRAIL and then improved the therapeutic efficacy. Importantly, repeated injection of high-dose TRAIL-affibody showed no obvious toxicity in mice. These results demonstrated that the engineered TRAIL-affibody is promising to be a highly tumor-specific and targeted cancer therapeutic agent.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Receptor ErbB-2/administração & dosagem , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Transplante de Neoplasias , Engenharia de Proteínas/métodos , Receptor ErbB-2/uso terapêutico , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico
20.
Bioorg Med Chem Lett ; 41: 127977, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766771

RESUMO

In order to expand structural diversity and improve antitumor efficiency, forty new naphthoquinone phenacylimidazolium derivatives were designed, synthesized and evaluated. Good synthetic yields were obtained under mild conditions using easily available starting materials. Cytotoxicity of these compounds was evaluated in vitro against a panel of human tumor cell lines: human breast carcinoma cell lines (MCF-7), human cervical carcinoma cell lines (HeLa), and human lung carcinoma cell lines (A549). Among them, the optimal compound 7m showed splendid antiproliferative activity with low to 50 nM IC50 values against MCF-7 and excellent selectivity of 256-fold compared with the normal cell lines L929. Compound 7m induced apoptosis in a dose-dependent manner. Further mechanism experiments showed that compound 7m dramatically inhibited the expression of survivin and activated the pro-apoptotic protein caspase-3. Our results indicated that the structural modification on the 1,3-substituents of naphthoquinone imidazoliums without 2-substituent is also promising to obtain new antitumor compounds.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Naftoquinonas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/síntese química , Imidazóis/química , Camundongos , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...